|
发表于 2020-6-10 09:31:39
10569 浏览 4 回复
[算法之美]
路径优化算法--Dijkstra和A*算法及其Matlab实现
本帖最后由 chasing 于 2020-6-10 09:36 编辑
写在前面的话:只是对两种路径优化算法进行简单的理解和尝试,为后续使用做准备。如果用到,请再次好好理解原理和Matlab源码。本文摘自作者博客 https://blog.csdn.net/qq_15390133 欢迎关注,留言。
参考博客:
1. [用Matlab实现A*算法和Dijkstra算法](https://blog.csdn.net/weixin_43795921/article/details/87945260)
2. [运动规划入门 | 1. 白话Dijkstra,从原理到Matlab实现](https://www.guyuehome.com/5652)
3. [运动规划入门 | 2. 白话A*,从原理到Matlab实现](https://www.guyuehome.com/6560)
直接上干货(参考上述博客可得)首先给出Matlab下的三个脚本文件:
TestScript.m
- %
- % TestScript for Assignment 1
- %
- %% Define a small map
- % map = false(10);
- map = ans;
- % Add an obstacle
- % map (1:5, 6) = true;
- map = logical(map);
- start_coords = [1, 1];
- dest_coords = [40, 20];
- %%
- close all;
- % [route, numExpanded] = DijkstraGrid (map, start_coords, dest_coords);
- % Uncomment following line to run Astar
- [route, numExpanded] = AStarGrid (map, start_coords, dest_coords);
- %HINT: With default start and destination coordinates defined above, numExpanded for Dijkstras should be 76, numExpanded for Astar should be 23.
复制代码 AStarGrid.m
- function [route,numExpanded] = AStarGrid (input_map, start_coords, dest_coords)
- % Run A* algorithm on a grid.
- % Inputs :
- % input_map : a logical array where the freespace cells are false or 0 and
- % the obstacles are true or 1
- % start_coords and dest_coords : Coordinates of the start and end cell
- % respectively, the first entry is the row and the second the column.
- % Output :
- % route : An array containing the linear indices of the cells along the
- % shortest route from start to dest or an empty array if there is no
- % route. This is a single dimensional vector
- % numExpanded: Remember to also return the total number of nodes
- % expanded during your search. Do not count the goal node as an expanded node.
- % set up color map for display用一个map矩阵来表示每个点的状态
- % 1 - white - clear cell
- % 2 - black - obstacle
- % 3 - red = visited 相当于CLOSED列表的作用
- % 4 - blue - on list 相当于OPEN列表的作用
- % 5 - green - start
- % 6 - yellow - destination
- cmap = [1 1 1; ...
- 0 0 0; ...
- 1 0 0; ...
- 0 0 1; ...
- 0 1 0; ...
- 1 1 0; ...
- 0.5 0.5 0.5];
- colormap(cmap);
- % variable to control if the map is being visualized on every
- % iteration
- drawMapEveryTime = true;
- [nrows, ncols] = size(input_map);
- % map - a table that keeps track of the state of each grid cell用来上色的
- map = zeros(nrows,ncols);
- map(~input_map) = 1; % Mark free cells
- map(input_map) = 2; % Mark obstacle cells
- % Generate linear indices of start and dest nodes将下标转换为线性的索引值
- start_node = sub2ind(size(map), start_coords(1), start_coords(2));
- dest_node = sub2ind(size(map), dest_coords(1), dest_coords(2));
- map(start_node) = 5;
- map(dest_node) = 6;
- % meshgrid will `replicate grid vectors' nrows and ncols to produce
- % a full grid
- % type `help meshgrid' in the Matlab command prompt for more information
- parent = zeros(nrows,ncols);%用来记录每个节点的父节点
- %
- [X, Y] = meshgrid (1:ncols, 1:nrows);
- xd = dest_coords(1);
- yd = dest_coords(2);
- % Evaluate Heuristic function, H, for each grid cell
- % Manhattan distance用曼哈顿距离作为启发式函数
- H = abs(X - xd) + abs(Y - yd);
- H = H';
- % Initialize cost arrays
- f = Inf(nrows,ncols);
- g = Inf(nrows,ncols);
- g(start_node) = 0;
- f(start_node) = H(start_node);
- % keep track of the number of nodes that are expanded
- numExpanded = 0;
- % Main Loop
- while true
- % Draw current map
- map(start_node) = 5;
- map(dest_node) = 6;
- % make drawMapEveryTime = true if you want to see how the
- % nodes are expanded on the grid.
- if (drawMapEveryTime)
- image(1.5, 1.5, map);
- grid on;
- axis image;
- drawnow;
- end
- % Find the node with the minimum f value,其中的current是index值,需要转换
- [min_f, current] = min(f(:));
- if ((current == dest_node) || isinf(min_f))
- break;
- end;
- % Update input_map
- map(current) = 3;
- f(current) = Inf; % remove this node from further consideration
- numExpanded=numExpanded+1;
- % Compute row, column coordinates of current node
- [i, j] = ind2sub(size(f), current);
- % *********************************************************************
- % ALL YOUR CODE BETWEEN THESE LINES OF STARS
- % Visit all of the neighbors around the current node and update the
- % entries in the map, f, g and parent arrays
- %
- action=[-1 0; 1 0; 0 -1; 0 1];%上,下,左,右
- for a=1:4
- expand=[i,j]+action(a,:);
- expand1=expand(1,1);
- expand2=expand(1,2);
- %不超出边界,不穿越障碍,不在CLOSED列表里,也不是起点,则进行扩展
- if ( expand1>=1 && expand1<=nrows && expand2>=1 && expand2<=nrows && map(expand1,expand2)~=2 && map(expand1,expand2)~=3 && map(expand1,expand2)~=5)
- if ( g(expand1,expand2)> g(i,j)+1 )
- g(expand1,expand2)= g(i,j)+1;
- f(expand1,expand2)= g(expand1,expand2)+H(expand1,expand2);
- parent(expand1,expand2)=current;
- map(expand1,expand2)=4;
- end
- end
- end
- %*********************************************************************
- end
- %% Construct route from start to dest by following the parent links
- if (isinf(f(dest_node)))
- route = [];
- else
- route = [dest_node];
- while (parent(route(1)) ~= 0)
- route = [parent(route(1)), route];
- end
- % Snippet of code used to visualize the map and the path
- for k = 2:length(route) - 1
- map(route(k)) = 7;
- pause(0.1);
- image(1.5, 1.5, map);
- grid on;
- axis image;
- end
- end
- end
复制代码 DijkstraGrid.m
- function [route,numExpanded] = DijkstraGrid (input_map, start_coords, dest_coords)
- % Run Dijkstra's algorithm on a grid.
- % Inputs :
- % input_map : a logical array where the freespace cells are false or 0 and
- % the obstacles are true or 1
- % start_coords and dest_coords : Coordinates of the start and end cell
- % respectively, the first entry is the row and the second the column.
- % Output :
- % route : An array containing the linear indices of the cells along the
- % shortest route from start to dest or an empty array if there is no
- % route. This is a single dimensional vector
- % numExpanded: Remember to also return the total number of nodes
- % expanded during your search. Do not count the goal node as an expanded node.
- % set up color map for display
- % 1 - white - clear cell
- % 2 - black - obstacle
- % 3 - red = visited
- % 4 - blue - on list
- % 5 - green - start
- % 6 - yellow - destination
- cmap = [1 1 1; ...
- 0 0 0; ...
- 1 0 0; ...
- 0 0 1; ...
- 0 1 0; ...
- 1 1 0; ...
- 0.5 0.5 0.5];
- colormap(cmap);
- % variable to control if the map is being visualized on every
- % iteration
- drawMapEveryTime = true;
- [nrows, ncols] = size(input_map);
- % map - a table that keeps track of the state of each grid cell
- map = zeros(nrows,ncols);
- map(~input_map) = 1; % Mark free cells
- map(input_map) = 2; % Mark obstacle cells
- % Generate linear indices of start and dest nodes
- start_node = sub2ind(size(map), start_coords(1), start_coords(2));
- dest_node = sub2ind(size(map), dest_coords(1), dest_coords(2));
- map(start_node) = 5;
- map(dest_node) = 6;
- % Initialize distance array
- distanceFromStart = Inf(nrows,ncols);
- % For each grid cell this array holds the index of its parent
- parent = zeros(nrows,ncols);
- distanceFromStart(start_node) = 0;
- % keep track of number of nodes expanded
- numExpanded = 0;
- % Main Loop
- while true
- % Draw current map
- map(start_node) = 5;
- map(dest_node) = 6;
- % make drawMapEveryTime = true if you want to see how the
- % nodes are expanded on the grid.
- if (drawMapEveryTime)
- image(1.5, 1.5, map);
- grid on;
- axis image;
- drawnow;
- end
- % Find the node with the minimum distance
- [min_dist, current] = min(distanceFromStart(:));
- if ((current == dest_node) || isinf(min_dist))
- break;
- end;
- % Update map
- map(current) = 3; % mark current node as visited
- numExpanded=numExpanded+1;
- % Compute row, column coordinates of current node
- [i, j] = ind2sub(size(distanceFromStart), current);
- % *********************************************************************
- % YOUR CODE BETWEEN THESE LINES OF STARS
- % Visit each neighbor of the current node and update the map, distances
- % and parent tables appropriately.
- action=[-1 0; 1 0; 0 -1; 0 1];%上,下,左,右
- for a=1:4
- expand=[i,j]+action(a,:);
- expand1=expand(1,1);
- expand2=expand(1,2);
- %不超出边界,不穿越障碍,不在CLOSED列表里,则进行扩展
- if ( expand1>=1 && expand1<=nrows && expand2>=1 && expand2<=ncols && map(expand1,expand2)~=2 && map(expand1,expand2)~=3 && map(expand1,expand2)~=5 )
- % if ( expand1>=1 && expand1<=nrows && expand2>=1 && expand2<=ncols && map(expand1,expand2)~=2 && map(expand1,expand2)~=3 && map(expand1,expand2)~=5)
- if ( distanceFromStart(expand1,expand2)> distanceFromStart(i,j)+1 )
- distanceFromStart(expand1,expand2)= distanceFromStart(i,j)+1;
- parent(expand1,expand2)=current;
- map(expand1,expand2)=4;
- end
- end
- end
- distanceFromStart(current) = Inf; % remove this node from further consideration
- %*********************************************************************
- end
- %% Construct route from start to dest by following the parent links
- if (isinf(distanceFromStart(dest_node)))
- route = [];
- else
- route = [dest_node];
- while (parent(route(1)) ~= 0)
- route = [parent(route(1)), route];
- end
- % Snippet of code used to visualize the map and the path
- for k = 2:length(route) - 1
- map(route(k)) = 7;
- pause(0.1);
- image(1.5, 1.5, map);
- grid on;
- axis image;
- end
- end
- end
复制代码 注: 运行环境,Matlab 2019a 版本,安装 `RTB(Robotic Tool Box)` 工具包,链接地址为,[RTB安装链接](https://petercorke.com/toolboxes/robotics-toolbox/) 。该工具包中可以运行作者大佬写到的matlab/simulink四轴历程,只需要使用指令 `sl_quadrotor` 即可。
使用方法:
在Matlab 中,使用 makemap(30) 来生成地图,通过鼠标来设置障碍形状。该例子生成了一个`30*30`的方阵,然后直接运行TestScript.m即可。其中要在TestScript.m中选择是采用A*算法,还是Dijkstra算法。同时设置起始点和终点在哪。下图显示得到的A*算法路径优化结果。其中绿色点为起点,黄色点为终点,黑色表示障碍,白色表示空闲,红色表示搜寻过,灰色表示最后规划的路径。
下图显示Dijkstra算法的路径优化结果:
对应的动态效果已经录屏,下面给出传送门(录屏水印广告请忽略):
1. [A*路径优化算法Matlab实现](
)
2. [Dijkstra路径优化算法matlab实现](
)
通过对比可以看出:A* 算法搜索速度较快,毕竟里面有贪心算法。这在地图较大的场景应用较好。但是A*算法只能得到局部最优解,并不能保证全局最优解。相比之下,Dijkstra算法尽管搜索速度慢,但是是全局最优解。不知道两种方法结合gmapping,hector或者cartographer生成的栅格地图会是什么样的效果。后面期待尝试一下。
|
 扫一扫浏览分享
|